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Structure studies of non-crystalline materials by 
electron diffraction 
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The ability of electron diffraction to determine the structure of non-crystalline materials has 
been critically revised on the basis of the main sources of error: the premature temination of 
the experimental intensity curve and the problems associated with the elimination of the 
inelastically scattered intensity. A method of studying the problem is presented and the 
efficacy of the most representative procedures for reducing errors in the final correlation 
functions is checked. 

1. I n t r o d u c t i o n  
It is well known that liquids and amorphous solids do 
not have periodic atomic arrangements. However, 
because atoms have well defined sizes and closest 
distances of  approach, both liquids and amorphous 
solids have definite structures relative to an origin 
at the centre of  an average atom. This structure is 
described by 

2R Io 4~R2g(R) = 4~R2Q0 + - -  S i ( S )  sin (SR) dS 
7~ 

in which Q(R) is the density of atoms, 4TcRZQ(R) the 
radial distribution function (RDF(R)), g0 the mean 
density of atoms, S = 4re sin 0/2 and the kernel of  the 
integral 

F(S)  = S i (S )  

is sometimes called the reduced interference function. 
Another useful correlation function, Q(R), is defined 
as  

Q(R) = 4ztR[e(R ) - g0] 

In practice, i (S )  is calculated directly from the 
corrected and normalized intensity observable in a 
diffraction experiment as 

I. - ( f 2 )  
i (S )  - 

( f ) 2  

where I, is the coherent-scattering intensity in absolute 
uni t s , f (S)  are the scattering factors and ( ) refers to 
composition averages. 

In general, information about the short-range struc- 
ture can be obtained from the position and area of 
maxima in RDF curves: nearest-neighbour spacings, 
average number of  nearest neighbours, the mean dihe- 
dral angle. However, the final result is subject to many 
sources of  error depending on the experimental radi- 
ation used, although the termination of  the experi- 
mental data at finite scattering vectors is the main 
challenge to obtaining reliable structural data for 
these disordered systems. 

Most experimental work has involved neutron and 
X-ray scattering experiments. As pointed out by 
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Cargill [1] electron-scattering studies on amorphous 
solids have been limited to thin film samples and, 
although some authors used electron diffraction 
[2-10], this technique has not been widely used 
because it presents some difficulties. Major problems 
are the correction of  inelastic scattering and the very 
limited range (Sm~x --~ 80rim 1) over which rather 
noise-free intensity data can be obtained. 

In spite of the above considerations, we think that 
electron diffraction can give an important contri- 
bution to the knowledge of  the structure of liquids and 
amorphous solids taking into account the following 
considerations: 

(1) X-ray and neutron-diffraction experiments can 
provide only an averaged picture of the structure of 
disordered systems (about 1020 to 10 21 atoms are 
sampled) and then local information is lost. In fact, 
the correlation functions evaluated from these experi- 
ments are insensitive to local phenomena such as 
phase separation [11]. On the other hand, we are 
interested in glasses based in selenium, some of which 
contain regions with extensive chemical segregation 
[12, 13] and we think that electron-scattering measure- 
ments, involving about 103 atoms, can distinguish 
multi-phase compositions [14]. 

(2) Along with reciprocal-space scattering tech- 
niques, TEM experiments provide complementary 
information in real-space over the same region. 

(3) Electron diffraction is the most suitable tech- 
nique to study thin foils. 

Although we believe that the above considerations 
are very convincing, one has to bear in mind that if we 
attempt to get a further insight into atomic arrange- 
ments and to devise a model of  the amorphous struc- 
ture, highly accurate and meaningful RDF functions 
are needed. Thus, the question is raised: are quan- 
titatively worthwhile the electron diffraction data or 
otherwise, their results are only qualitative? 

The present work attempts to answer this question 
and to arouse interest in electron-diffraction measure- 
ments. In the next section, the main sources of  error 
are discussed, then we present our method studying 
the problem and, finally the validity of the main 
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procedures for the reduction of errors on severely 
limited raw data are analysed. 

2. S o u r c e s  o f  error in e l e c t r o n  
s c a t t e r i n g  

The major problems in this studies have been multiple 
scattering [15], uncertain scattering factor [15, 16], 
"aliasing" [17] due to the discrete character of Fourier 
transformation and some systematic errors as the nor- 
malization error [18], but the main amount are due to 
truncation errors and a wrong inelastic-scattering cor- 
rection. We follow with both main sources of  error. 

2.1. T r u n c a t i o n  errors  
Owing to the small wavelength associated with elec- 
trons, one would expect it to allow the exploration of 
large distances in reciprocal space. However, because 
of  the S-dependence of scattering factors, f ( S ) ,  and 
the usual system of data recording, the range is limited 
to about Sma x < 120nm -~ [1]. However, our own 
experience shows that beyond Sm,x --~ 80 nm-  ~ it is not 
possible to determine faithful data with conventional 
instruments. This truncation of  data causes two errors 
in the RDF functions: (i) loss of  resolution, (ii) spuri- 
ous ripples of wavelength 2g/Sm~x (sidebands). 

2.2. Inelast ic  sca t t e r ing  
From the totally scattered intensities one has to elimi- 
nate the inelastic contribution which gives a con- 
tinuous background under these curves. Errors in the 
background corrections are responsible for mistaken 
determination of the radii ri of  the coordination 
spheres and of the coordination numbers, ni. 

Several procedures have been used [6, 7] to deter- 
mine this correction, but they are affected by a 
remarkable amount of arbitrariness; accordingly, we 
only retain two procedures: the analytic background 
correction method of  D'Antonio et al. [19] and the 
"crystalline phase" method. 

In the first method, the background line Bm(S ) is 
generated as 

Bin(S) =- [um(S)Bm 1(S) -t- vm(S)bm(S)], 

m =  1 , . . . , n  

where m represents the number of a segment in a set 
of n segments, Um(S) and vm(S) are weighting coef- 
ficients in the overlap range of two segments, bm(S ) is 
a function given by 

bin(S) = exp(am + tim S~m) 

the background constants am, tim and 7m being deter- 
mined on the basis of some positivity and area criteria. 

Although this method has been successfully applied 
[19], we have chosen the other one because for many 
cases the background cannot be described via a set of 
analytic functions [7], and as we have less confidence 
on final results coming from sophisticated corrections 
and complicated refinements. 

The "crystalline phase" method is based upon the 
assumption that the smooth curve through the minima 
of  the corresponding polycrystalline phase (obtained 
by heating the amorphous films) represents the inelas- 
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tic background, which has to be substracted from the 
totally scattered intensity. The method was first sug- 
gested by Kommik [5] and justified by Gandais [9]. We 
have used an improved version [20, 21] which allows 
a simultaneous normalization and inelastic contri- 
bution correction, the interference function, i(S), 
being directly obtained as 

I(S) -- Imed(S) 
i ( s )  = 

I m e d ( S )  - -  ~ I b ( S )  

where I(S) is the scattered intensity by the amorphous 
system in arbitrary units, Imea(S) is a smooth curve 
through the inflection points of I(S) and represents its 
medium level signal, Ib(s)  is the "crystalline" back- 
ground obtained in similar conditions that I(S)  and 
is an adjustable parameter which give account that 
both measurements (amorphous and crystalline phase) 
correspond to separated recordings. The knowledge of  

is related to N, the normalization constant via 

Imed(S) = N ( f ( S ) )  2 + ~I~(S) 

From the above equation we evaluate e and N by 
means of a least squares procedure and then, we cal- 
culate the i (S)  function. 

On the other hand, very accurate electron-diffraction 
experiments have been realized with energy filters and 
electronic-intensity detection [4, 22-24]. However, we 
are dealing with conventional electron microscopes 
which are not fitted with a velocity filter. 

3. Method of analysis and experimental 
procedure 

In order to obtain a quantitative evaluation of the 
effects, on the final RDF,  of the termination error, and 
to check the efficiency of the methods consecrated to 
restore the true unaffected RDF, we have devised a 
simple method: we start with the published i (S) data 
of Waseda [25] on liquid selenium at 523 K, which 
extend to a high upper limit (Smax = 148rim-'  and 
Smin = 5 nm - ' )  and we calculate the corresponding 
distribution functions (which will be our reference 
functions for comparison). Then, we purposely trun- 
cated the experimental data at the node in S = 80 nm- J 
to create a new data set of much shorter length. 
Another RDF was computed using this new data. 
Fourier transformations were performed using Filon's 
[26] quadrature with basic intervals of 1 nm ' for S. 
For both sets of data the reduced interference function 
was previously extrapolated to zero, in the experi- 
mentally inaccessible region of very small S, by means 
of the usual procedure [27]. Subsequently, we try and 
evaluate the different correction strategies. 

A residual factor largely used [28-30], namely 

Z ]Ai -- Bi] 
i A - 

]Ai[ 
i 

where A i and B i refer to the reference and trial RDF,  
respectively, was used to check the agreement between 
both distribution functions. Note that we have chosen 
RDF functions as a reference for comparison instead 
of the Q(R) ones based on two reasons: (i) with regard 
to the effects of the finite upper limit in S, RDF  



becomes worse because of the implicit convolution 
does not distort or shift peaks in Q(R) and, peak 
shapes are affected in the RDF by the extra factor of 

30 
R. Thus, this reference is a more severe test. (ii) The 
RDF is directly used to get the short-range order 
information. 

In every case the internal consistency of the i(S) 20 
data was checked according to the method proposed 
by Rahman [31], which showed that i(S) must satisfy 
the following relation: 

10 

4rc~ol3(JI(F1)) = 1/(/trc) I ° Si(S) 
\ #1 

x { J o [ ( S  + P,)I] - -  Jo [ (S  - ,u) l ] }  d S  
0 

J0 and J1 being spherical Bessel functions,/~ an arbi- 
trary parameter in nm-I and 1 must be less than the 
radius Rc of  the sphere such that for any R < Rc, the 
function RDF(R) is effectively zero. 

Although the determination of the radii of the coor- 
dination spheres from the RDF is straightforward, 
nevertheless, the measurement of  the coordination 
number is not so evident because: (i) different criteria 
in determining the area under the coordination peak 
[25, 32], (ii) overlapping between neighbouring maxima 
and, mainly, (iii) the area being dependent of the 
maximum scattering vector, Sma x. Therefore, we have 
used the method of Stetsiv [33], based on the theoreti- 
cal relation between the height of the first maxima and 
Sma×. This method allows us to obtain the coordi- 
nation number, n, and the mean-square amplitude of  
vibration of the atoms in the first coordination shell, 
free from the aforementioned drawbacks. 

It is obvious that this proposed method allows us to 
study the influence of  the termination of data, but it is 
unable to evaluate errors due to a bad inelastic scatter- 
ing correction since we start with the i(S) data. In 
order to quantify this influence we have obtained 
electron-diffraction raw data of amorphous selenium 
up to Smax = 80.5 nm 1. Then we compare the RDF 
corrected for termination errors by the most efficient 
method and whose inelastic scattering was corrected 
by the "crystalline phase" procedure, with another 
one obtained by means of a very large set of  X-ray 
data for which the inelastic scattering correction is 
more simple by far. 

Other experimental precisions follow: 
(a) The thin films of amorphous selenium were 

obtained by thermal evaporation. 
(b) The electron diffraction experiments were per- 

formed inside a Phillips EM 300 electron microscope 
operated at 80 KV. 

(c) Diffraction patterns were recorded photographi- L 
cally on Kodak film and then scanned with a Joyce 0.500 
Loebl-3cs microdensitometer. The photographic cali- 
bration was carried out by the Karle method [34]. 

4, Sys temat ic  errors 
In order to take into account only the termination 
error, we have corrected the original data set and the 
truncated one (which we refer to as data 1 and data 2, 
respectively, in the following discussion) from the 
effects of systematic residual errors. Since these errors 
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Figure 1 RDF functions derived from the complete original data of 
Waseda ( - - - )  and that corresponding to the corrected one from 
systematic errors ( ). 

usually appear as low frequency perturbations which 
affect the low-R region, it can be eliminated following 
a method of repeated Fourier transforms [9, 18, 35]: 
near the origin the correlation function Q(R) must be 
represented by a straight line with a slope m -- - 4zcp0. 
Then, the Q(R) curve deduced from the experimental 
data is modified setting the values in the region of 
subatomic distances equal to -4rcRp0, and a new 
interference function is obtained by the reverse trans- 
formation. The difference between both interference 
functions show up the systematic errors which can 
be removed giving a corrected interference func- 
tion, whose Fourier transform will give the corrected 
correlation function. This procedure can be iterated 
although no substantial improvement was observed 
beyond two iterations. 

The radial distribution function derived from data 1, 
that we set up as "reference", is shown in Fig. 1 along 
with the corrected one from systematic errors. We can 
see that the only effect of this correction take place on 
the low-R ripples, leaving unaffected the maxima. In 
Table I we show the results of the Rahman test relative 
to the 'reference' data. 

In Fig. 2 we show the RDF derived from data 2 and 
corrected from systematic errors, along with the refer- 
ence. It can be seen from comparing both curves 
the remaining low-R riples and a remarkable loss of 

T A B L E  I Test of the original i(S) data (corrected from syste- 
matic errors) by the Rahman method. The last columns list, respec- 
tively, the left and right hand-side of the Rahman equation 

1.000 

1.500 

0.350 0.156598 E - 01 0.156942 E - 01 
0.850 0.154261 E - 01 0.154597 E - 01 
1.350 0.150038 E - 01 0.150358 E -  01 

0.350 0.124 131 E + 00 0.124 106 E + 00 
0.850 0.118816 E + 00 0.116795 E 4- 00 
1 .350  0.104203 E 4- 00 0.104 189 E 4- 00 

0.350 0.412 539 E 4- 00 0.411 914 E 4- 00 
0.850 0.359054 E + 00 0.358554 E + 00 
1.350 0.273 824 E 4- 00 0.273 515 E + 00 

2 0 2 3  
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Figure 2 RDF derived from the limited data and corrected from 
systematic errors ( ) and the "reference" ( - - - ) .  
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Figure 4 Comparison of the RDF obtained by the Narayan method 
and the "reference" ( - - - ) .  

resolution on curve 2. However, the corrections 
account for a considerable improvement in the resi- 
dual factor (from A = 2.36% to 1.72%). 

5. Extension of the observed scattered 
data 

The traditional approaches to obtain reliable RDF 
functions are either to extend the observed data to 
large values of S or to replace S i(S) by S i(S) M(S), 
where M(S) is a convergence factor. We now consider 
the first case. 

Various methods of extrapolating the experiment- 
ally inaccessible data have been suggested. We have 
used the negative cut-off procedure of Narayan [36], 
based upon the strict positivity of the G(R) = ~(R)/~o 
function and avoiding the biasing of other methods. 

The extended i(S) function is plotted in Fig. 3. The 
bar in S = 79nm ~ denotes the separation between 
the extended data and the original ones corrected from 
systematic errors. It is worthwhile indicating that this 
previous refinement was a necessary condition for the 
convergence of the Narayan method. Fig. 4 shows the 
obtained RDF, which is a close fit to the reference. 
Data were extended up to 300 nm-  ~ and we have per- 
formed 45 iterations (the residual factor was lowered 
until A = 1.26%). 

We have also tried the extension method due to 
Shevchik [37], which has been applied by D'Anjou 
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Figure 3 Extended i(S) function obtained using the iterative 
procedure of Narayan. 
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[38], but our results were very poor. In this method the 
S i(S) function is assumed a weighted sum of sine 
terms. For  the large-S oscillation in S i (S) only one 
term may be retained yielding to a damped sine wave 
which is fitted by least squares to these oscillations. In 
our case, the last two oscillations of the reduced inter- 
ference function do not correspond strictly to the 
large-S region and more terms of the sum should be 
considered. 

6. Convergence factors 
Some convergence factors, M(S), are frequently used 
to suppress the spurious termination maxima. The 
change of S i(S) by S i(S) M(S) has two purposes: 
(i) it reduces the importance of  the less accurate high- 
angle data, (ii) it decreases the sharp cut-off of data at 
Sma~. The more used M(S) functions have been the 
Gaussian (artificial temperature factor) [39-41] 

M(S) = e x p ( - b S  2) 

and the resolution function or Lanczos window [11, 
17, 42] 

Sm~x sin (7~S/Srnax) M ( S ) -  ~S 

The latter has a clear physical basis in that limitation of 
data to S < Smax is equivalent to a resolution in the 
direct space of 2~/Sm,x and, moreover, it has been sug- 
gested [11] that the more well behaved results are 
obtained by means of  this function. Furthermore, the 
practical efficacy of the Gaussian window is restricted 
because of the existence of an upper bound of  the 
parameter b which corresponds to a "superheating" of 
the phase [43]. 

Whenever we use a convergence factor, the calcu- 
lated correlation function, Qo(R), becomes [39] 

Qc(R) = Q(R)*Cw(R)*CM(R) 

where * denotes convolution and, the smearing func- 
tions Cw(R) and CM(R) are, respectively, the Fourier 
transforms of the observation rectangular window 
and the M(S) discriminative window. 
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Figure 5 RDF obtained using a Gaussian convergence factor, 
M(Sm~) = 0.1, and deconvoluted by the iterative method of Van 
Cittert Ergun.@ ) "Reference". 

As it has been previously discussed [39, 44], this 
double convolution involves an important broadening 
of the maxima and such artifact is the price we must 
pay in order to remove the spurious features. The 
classical deconvolution methods [45-47] are unable to 
retrieve the true Q(R) function from the smeared 
Q~(R); for example, Fig. 5 shows the result of the 
iterative method of Van Ci t ter t -Ergun [45], where we 
have used a Gaussian convergence factor so that 
M(Sm,x) = 0.1 (no improvement was observed beyond 
six iterations), and a poor  agreement is obtained. 
In fact, the method improves discreetly the raw 
result obtained by simply applying the convergence 
factor but it is unable to correct the broadening 
coming from the limitation of data because of the 
involution property [48] exhibited by Cw(R) (the 
sampling function). 

However, the approximate Mencik method [49] 
allow us to overcome this problem by supposing an 
analytical form to the Qo(R) maxima, by means of a 
trial-function procedure. A first insight into the poten- 
tiality of the method was carried out by Warren [39] 
which, however, dealt with the less efficient Gaussian 
discriminative window [44]. In the latter reference we 
have presented and tested a useful version of Mencik's 
method where M(S)  is the Lanczos function and it is 
very appropriated, f o r  the case of sharp peaks on a 
smooth background. 

At this point we outline the main steps of this 
approximate treatment: 

(i) Separation of Q¢(R) in a slowly varying back- 
ground, Qo(R), plus the relevant maxima, Qc,(R), 

Q~(R) = Qo(R) + ~ Qo,(R) 
i 

so that each Qo,(R) maxima, centred at Ri, undergoes 
the correction procedure while the background is 
unaffected by the convolution. 

(ii) Analytical approximation of  the ideal peak 
profile 

Q,(R) ~- Q,,(R) 

We have tried Gaussian and Lorentzian profile func- 

tions, which have been largely used in the Rietveld 
refinement of crystal structures from powder diffrac- 
tion data [29]. 

(iii) Determination of the smearing function, C(R) 

C(R) = [Cw(R)], [CM (R)] 

(iv) Convolution of the assumed Q,(R) function 
with C(R) to yield a convoluted function, F(R) 

F(R) = [Q,(R)].[C(R)] 

(v) Subtraction of the convoluted function, F(R) 
from the calculated Qc (R) one 

e(R) = Qc(R) - F(R) 

This difference function contains some information 
on the corrections to be applied to the assumed Q, 
function. 

Evaluation of  a better approximation to the ideal 
Q(R) maximum, Q'(R): 

Q'(R) = Q,(R) + e(R) = Q,(R) + Qc(R) - F(R) 

With regard to Q, (R) we have distinguished two cases: 

6.1. Gaussian fit 

Q,(R) = A exp ( - a Z R  =) 

(for simplicity the peaks are supposed as centred at the 
origin). Then, we have showed [44] that 

= A exp ( - a Z R  2) + Q~(R) - A(F(R)/A) Q'(R) 

and 

where 

F(R)/A = exp ( - a = R  2) C(R) 

C(R) = (Smax/rO{[Si(rc - Sm,xR) 

+ Si(r~ + Sma~R)]/2~} 

Si (X) being the sine integral 

Si(X)  = I ~ s i n t d t  
J 0  t 

and the parameters A and a are evaluated in such a 
way that the F(R) peak matches the width and height 
of the corresponding Qc maxima. 

6.2. Lorentzian fit 

Q~(R) = A/(1 + a=R 2) 

The obtained result for this case is similar to the 
precedent one except that now F(R)/A is 

F(R)/A = (SZm,,/Zrc2a) 

2a# 

where/ t  = ~/Smax and sinc(X) = (sin X)/X. 
In Fig. 6 we show the first maxima of the RDF(R) 

(data 1) together with that calculated via the Lanczos 
function as weighting window and the best fit obtained 
by the deconvolution method above exposed (with 
Gaussian fit and the back-shift correction referenced 
in [44]). The residual factor, for the case of Lanczos 
function without deconvolution was A = 2.96%, and 
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Figure 6 First maximum of the RDF: (a) ( - - . - - )  calculated using 
the Lanczos function as convergence factor, (b) ( ), decon- 
voluted from the previous one, and (c) ( -), "reference". 

remarkable improvements (1.68% and 1.40%, depend- 
ing whether only the first or the two first maxima were 
deconvoluted) were obtained. 

Nevertheless, the result for the Lorentzian fit was in 
poor agreement with the reference, suggesting that the 
shape of the considered maxima departs drastically 
from Lorentzian. 

7. The maximum entropy method 
Very recently, Wei has published [50] an original 
insight into the problem by proposing a method based 
upon the information theory and which avoids the 
subjective judgements implicit in other methods. The 
maximum entropy method (MEM) showed that the 
optimum 0(R) has the form 

~(Rj) = exp - 1 - v 0 -  ~ visinc(RjSt 
l = l  

where the (L + 1) set of v parameters are found by 
substituting the above equation into the equation 

M M 

~, 4rcR~o(Rj) = 2 4zcR2 0o 
j = l  j -1  

which express the normalization condition for the 
radial density, and into the L equations 

k 

c~ 
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Figure 7 RDF restored via the MEM method, along with the 
"reference" ( -  ). 

(1) The intervals in reciprocal space were AS = 
2nm i. 

(2) In real space we have sampled M = 250 spheri- 
cal shells by steps of R = 1 nm. 

Moreover, the following considerations (not con- 
templated in the original paper of Wei) can be drawn: 

(1) Unstable solutions and unreliable results were 
obtained whenever the input data were not refined. 
High quality of data is a prerequisite. 

(2) The limit of  the Nyquist images, 2~/AS, must be 
avoided. 

On the other hand, we propose an alternative vari- 
ant of the Wei method which consists of evaluating the 
o(R) function and then, by using the inverse Fourier 
equations, we may obtain the i ( S )  function over an 
extended range. This extension of the truncated data 
can be observed in Fig. 8. 

Although reliable RDF functions have been obtained 
by means of this last variant, nevertheless the good- 
ness of the fit (A = 2.02%) is lower than the obtained 
via the direct method of Wei. 

8. Remarks on the precedent methods 
A few other methods have also been tried to deal with 
termination errors, as the sampled transform method 
of Lovell et al. [52] which is a very efficient one but, 
owing to the severe termination of data, it gives very 
scarced points in the real space resulting in a poor 
resolution. 

M 
4~R][Q(Rj) -- po]sinc(RjSt) = i(St), 

j=l 

f o r / =  1 , 2 , . . . , L  

corresponding to the Fourier inversion and, i(St) 
being the L observed values of  the interference func- 
tion. 

The resulting equations are highly non-linear and 
have been solved by a hybrid algorithm based on 
Newton's method [51]. 

It is apparent from Fig. 7 the excellent quality of the 
RDF obtained by this method (A = 1.54%) in the 
following conditions. 

% 

0.6' 
0.4 

0.2 

c 

-0.2 
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A , - .  I Extended zone 

. ~ s(nm-t) 

Figure 8 Extended i(S) function obtained by the MEM method. 
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TABLE II Parameters which define the relative merit of the 
correction methods: (A), residual factor; (RI), first-neighbour dis- 
tance; (R2), second-neighbour distance; (n), coordination number. 
Procedures: (1) original data; (2) raw truncated data; (3) truncated 
data corrected from systematic errors; (4) Narayan method; (5) 
Lanczos function and deconvolution; (6) MEM method. 

A R t R 2 n 

(I) 2.36 3.71 2.04 
(2) 2.36 2.38 3.83 2.09 
(3) 1.72 2.38 3.65 2.00 
(4) 1.26 2.34 3.64 2.05 
(5) 1.40 2.36 3.73 2.00 
(6) 1.54 2.36 3.65 2.00 

With regard to the above mentioned methods we 
show in Table II a summary of the parameters which 
define its relative success. 

The best approach to the reference (the smallest A 
value) is obtained by the Narayan method. However, 
in some way, the R D F  obtained via the M E M  method 
could be interpreted as the opt imum approach in the 
feeling that its result could be a closer fit to reality than 
the adopted reference itself. 

9. Appl i ca t ion  to  a m o r p h o u s  s e l e n i u m  
In order to evaluate the influence of errors related to 
a bad inelastic correction, we have applied the "crystal- 
line phase" and Narayan methods to thin film samples 
of amorphous  selenium whose electron diffraction 
spectrum was recorded up to Smax = 80.5rim -~. 

Fig. 9 shows both radial distribution functions: that 
obtained according to the above procedure and that 
published by Andonov [53], obtained with X-rays and 
Sma x = 175nm 1 (the residual factor is A = 3.6%). 
Provided that inelastic scattering corrections are 
straightforward for X-rays and that a residual factor 
A = 1.2% corresponds to the best fit in the correction 
of termination errors for liquid selenium, we conclude 
that inelastic scattering correction errors amount  to 
about  twice the magnitude of those for termination. 

10. Conclusions 
The contribution of this work lies in providing results 
and arguments to discuss the relative significance of 
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Figure 9 Corrected RDF obtained "rom data of amorphous 
selenium ( ) and that published by Andonov ( -). 

the main sources of  error in electron diffraction, in 
testing the efficiancy of some methods to correct them 
and in deciding about  the quantitative meaning of  the 
obtained results. 

In earlier sections we have showed that termination 
errors are less significant that those derived from bad 
inelastic scattering corrections. We have also made 
manifest the power of  some methods to reduce the 
truncation errors even for drastic limitation of  data. 
Such results prompt  the question: are the obtained 
R D F  functions accurate enough to envisage compari-  
sons with those calculated from models? In this matter 
we think that the results might be improved if a com- 
parison with fine details of  models of  the amorphous 
structure is wanted. 

Nevertheless, we suggest that qualitative and semi- 
quantitative deductions are meaningful and that com- 
parison with computer generated models could be 
very useful with regard to the positions of  the main 
peaks, number of  first neighbours and the approxi- 
mate magnitude of the maxima. 
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